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Abstract 

Reducible plane groups of rectangular systems with 
c lattices are classified into frieze classes and reduc- 
ible space groups with centered lattices are classified 
into layer and rod classes with respect to those Q 
reductions that lead to Z reduction but not to Z 
decomposition. Tables are given for plane groups, 
presenting their homomorphic projections onto frieze 
groups, and for space groups, presenting their homo- 
morphic projections onto layer and rod groups. These 
projections define the classes to which the plane and 
space groups belong. In both cases, the characteristic 
shift vectors are listed that change the plane or space 
group without changing the homomorphic projec- 
tions onto frieze, layer and rod groups. 

I. Introduction 
In the established terminology of integral representa- 
tions of finite groups [Curtis & Reiner (1966); in a 
crystallographic context: Brown, Billow, Neubiiser, 
Wondratschek & Zassenhaus (1978)], Z decom- 
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position is a special case of Z reduction. In paper I 
of this series (Kopsk~, 1993), the frieze classes of 
reducible plane groups and layer and rod classes 
of reducible space groups with respect to those Z 
reductions that are Z decompositions were tabulated. 
To complete the distribution of reducible space 
groups into layer and rod classes (plane groups into 
pairs of frieze classes), we consider now the cases of 
those Z reductions that are not Z decompositions. 
For simplicity, we shall use the term Z reduction to 
mean only those that are not Z decompositions if we 
do not state otherwise. 

The classification of reducible space groups with 
respect to Z reductions has a few specific features 
that distinguish it from the classification with respect 
to Z decompositions. This is one of the reasons for 
considering them separately. 

Classification into layer and rod classes (or into 
pairs of frieze classes) is equivalent to factorization 
by partial translation subgroups or to determination 
of corresponding homomorphic projections. The 
latter are more suitable for Z reductions. To avoid 
misunderstanding, let us observe that the projections 
we talk about are not identical with the special projec- 
tions listed in International Tables for Crystallography 
(1987). 

O 1993 International Union of Crystallography 
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2. Z reductions and centered lattices 

Z decomposition of a translation group is a decompo- 
sition into a direct sum of translation subgroups, while 
Z reduction refers to a subdirect sum, where a direct 
sum is again a special case of the subdirect sum. 
Accordingly, we use the term subdirect sum below 
only in cases that do not imply a direct sum, if not 
stated otherwise. There is, furthermore, a close 
relationship between Z reductions or subdirect sums 
and centered lattices that is worthy of dimension- 
independent study. We will now see how reductions 
are related to lattice types up to three dimensions. 

Crystallographers conventionally tend to consider 
the difference between primitive and centered lattices. 
Let us consider the p and c types of rectangular 
lattices in the plane as described in the book by 
Brown, Billow, Neubfiser, Wondratschek & Zassen- 
haus (1978). Clearly, if we take vectors ( a+h) /2 ,  
( a - b ) / 2  as a new conventional basis, then the primi- 
tive and centered cases exchange their roles. We have, 
however, a strong reason to prefer the choice of 
vectors a and b as the conventional basis: the transla- 
tion subgroups T(a), T(h) that they generate are 
invariant under the action of rectangular point 
groups, while the groups T[ (a+b) /2 ] ,  T [ ( a - b ) / 2 ]  
are not. However, this reasoning cannot be applied 
to cubic lattices of the three types P, F and I, where 
all corresponding translation groups are irreducible 
under the action of cubic groups. 

In any case, the conventions are such that all lattices 
of Bravais p type in the plane or of P type in three 
dimensions imply Z decomposition under the action 
of a reducible point group. There is only one centered 
type in the plane, the c type, which leads to Z reduc- 
tion. In three dimensions we have three centered types 
- base centered (A, B or C), volume centered (I)  
and face centered (F).  The symbols A, B, C express 
the same centering with respect to various settings. 

For C centering, the centering vector lies in the 
plane V(a, b) and the translation group is expressible 
as the direct sum of the translation group in the plane 
(centered plane lattice) and the translation group 
generated by vector c. The cases of C centering appear 
only in inclined reductions of monoclinic groups and 
in reductions of orthorhombic groups; factorization 
by T(c) leads to layer groups with rectangular c- 
centered lattices. All these cases are recorded in tables 
in paper I (Kopsk~,, 1993). 

The rhombohedral lattice (R) is a special case. It 
is primitive in the rhombohedral basis. The corre- 
sponding translation group is Z reducible but the 
reduction is expressed better in the hexagonal basis, 
in which the lattice can be considered as centered 
hexagonal. 

Z decomposition and Z reduction as well as direct 
or subdirect sums are established mathematical con- 
cepts, the meanings of which are clear in any 

dimension. The concept of centered lattices is a con- 
ventional concept, introduced on the basis of 
experience with three-dimensional crystallography 
and its meaning in arbitrary dimensions is thus far 
not entirely clear. 

3. Specific features of factorization with respect 
to Z reductions 

For Z reductions, the translation subgroup To of the 
space group invariably splits into a subdirect sum 

To = To,O To2[0ud2u . . .  udp]  

and the projections 

TO, = To1[0ud2, u . . .  udp,] ,  

TOe = T o e E O u d = u  . . .  ud~e] 

appear as translation subgroups of the factor groups 
IL = ¢r1(G), R = o'e(G), respectively. The Z decomposi- 
tions occur as special cases of Z reductions, when 
To = To103 Toe, Tel = T° I ,  To2 = T°2. The group 

Too = Tol @ Toe 

is the translation group that defines the conventional 
unit cell for Z decompositions and Z reductions. 
Thus it corresponds to the group T(a, h) in planar 
cases and T(a, b, e) in three-dimensional cases, where 
a, h, e are the vectors of the conventional basis. For 
Z decomposition, the group Too coincides with the 
group To; for Z reduction, Too is a subgroup of To 
and the centering vectors di, i = 1, 2 , . . . ,  p, are rep- 
resentatives of coset resolution of To versus Too. 
There are three main practically immediate and inter- 
related consequences that distinguish Z-reducible 
eases from Z-decomposable ones. 

1. The symmorphic representative of a subperiodic 
class is never associated with Z reduction. Clearly, 
the symmorphic representative, as a semidirect prod- 
uct, must contain the (copy of the) layer or rod group 
of the class it represents as its subgroup. This is 
impossible here because the space group does not 
even contain the translation subgroups T°1, T°2 of 
groups I1_ and R. From the viewpoint of group- 
extension theory (Ascher & Janner, 1965, 1968/1969), 
the projections of centering vectors djl, die may be 
interpreted as mutual nonprimitive translations. 

2. Homomorphic projections of standard space 
groups with respect to Z reductions never result in 
standard subperiodic groups. Either the setting or, at 
least, the lengths of standard vectors of the conven- 
tional basis are different. Indeed, if vectors a, h, e 
define the standard conventional cell of the space 
groups of some system then vectors a and h define 
the standard conventional cell of the corresponding 
layer groups, vector c the standard conventional cell 
of the corresponding rod groups. This corresponds 
to the Z decomposition To = T(a, b, c) = T(a, b)@ 
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T (c )=  To~@To2. While, for Z decompositions, 
To~ = T°~=o-~(To) and 7"o2 = T02=O-2(To), for Z 
reductions, Tol c T°l  = 0 h(To) and 7"o2 ~ TO2 = 
o2(To). The conventional cells of projected groups 
are therefore smaller than in the case of Z decomposi- 
tions. 

3. The intersection theorem does not hold for Z 
reductions. The pair of a layer and a rod group of 
the same geometric class, with translation subgroups 
T°~,  T°2,  respectively, uniquely determines a space 
group of this geometric class with translation sub- 
group T ° = T°~ q) T°2 since the sum of nonprimitive 
translations that satisfy Frobenius congruences 
mod T°~ and T°2,  respectively, satisfies Frobenius 
congruences mod T ° .  In view of additional condi- 
tions [equation (8a) of (Kopsk~ (1989a)], it may or 
may not satisfy the congruences mod To and hence 
it may happen that a pair of subperiodic groups does 
not determine any space group with the translation 
subgroups To. However, theorem 3 of Kopsk2~ 
(1989b) shows that such a pair may define several 
space groups of the same type, differing by so-called 
'characteristic shift vectors'. 

4. Translation normalizers and characteristic 
shift vectors 

The shift of a space group G = {G, To, P, uo(g)} in 
space by a vector -t leads to a group G(a')= {G, To, 
P + x ,  uo(g)}. The shift can also be expressed by the 
change of the system of nonprimitive translations 
with respect to the origin P by the so-called 'shift 
function' q~(g, a-) = a-- g,t, so that the shifted group is 
expressed as G(x)={G,  To, P, uo(g)+q~(g, x)}. If 
the shift ~r satisfies the condition ~(g, x)~ To for all 
g ~ G, which can be expressed in the form of con- 
gruences q~(g, "r) = 0 mod To, then G(a') = G. All vec- 
tors ~r that satisfy these conditions and hence do not 
change the group G form a so-called 'translation 
normalizer' TN(G) = TN(G, To) of the group G. The 
symbol TN(G, To) refers to the fact that all groups 
of the arithmetic class (G, To) have the same transla- 
tion normalizer. The latter occur as translation sub- 
groups of affine and Euclidean normalizers [Won- 
dratschek's contribution to International Tables for 
Crystallography (1987)]. They can be easily deduced 
from space-srou p diasrams (Hirshfeld, 1968) and 
they are themselves of both interest and importance 
in more general contexts (Kopsk2~, 1992). 

If the projections of space group G are the layer 
group Ik = try(G) and the rod group I~ = tlr2(G), then 
the projections of the group G(a') are the layer group 
Ik(-tl) and the rod group R(a'2), where xl = oh(a'), a'2 = 
o'2(a') are projections of shift vector x. The layer group 
~_(x~) coincides with Q_ only if-r~ is a vector of the 
translation normalizer T/v(Q-)= TN(G, T°~) and the 
rod group R(a'2) coincides with R only if-t2 is a vector 
of the translation normalizer TN(I~)= TN(G, T°2). 

For Z decompositions, TN(G) = TN(L)O) TN(•) 
and if a shift a- leads to a group G(,r) distinct from G 
then its projections "r~, "r2 lead to layer and rod groups 
U_(,r~) and R('r2) distinct from ~_ and R, respectively. 
This follows from To~ = T01 and To2 = T02. For Z 
reductions, we still have TN(I1)=TN(G,T°I) ,  
TN([~) = TN(G, T°2), but now Tol C TO1 and To2c 
T°2 and often TN(G)c  TN(n_)0)TN(I~). Let us now 
consider the coset resolution: 

TN(I1 )q) TN(R) = TN(G)[0wq2w . . .  wqs] ,  

where qi are the characteristic shift vectors. These 
have the property that IL(qi)=IL and R(q i )=R  but 
G(q~) # G. Hence the shift of a space group G by qi 
leads to a group G(q~), of the same type and param- 
eters as G, but of a different location in space, while 
homomorphic projections of both groups G and G(qi) 
are identical. 

5. Factorization procedure for Z reductions 

As in the case of Z decompositions, we can perform 
the factorization procedure either algebraically or 
with the use of relevant space-group diagrams. In the 
first step of algebraic factorization, we determine the 
components of the system of nonprimitive transla- 
tions of the space group G in subspaces V(a, b) and 
V(c) in terms of the conventional basis vectors of 
groups T°~ and T°2 . By comparing these with stan- 
dards, we get the subperiodic factor groups. 

Factorization with use of space-group diagrams is 
direct, more appealing for crystallographers and it 
has some new features in comparison with Z-decom- 
posable cases. The direct sum Too = To1GTo2= 
T(a, b,c) defines the conventional unit cell (in a 
trigonal system this is the hexagonal cell) and the 
graphical symbols refer to this cell. For example, the 
dotted line again means a glide plane with glide 
translation c/2. The centering vectors di are elements 
of the translation group To and hence they combine 
with every operation {g[t}, t E Too--T(a ,  b, c). The 
addition of the centering vector brings a shift of the 
symmetry element in space and adds a screw or glide 
translation to it, depending on the type and orienta- 
tion of the operation g. Symmetry elements then 
appear in couples (A, B, C and I centerings), triplets 
(rhombohedral  lattice R) or even quartets (F  center- 
ing) and the simple rules for converting the diagram 
of a space group into those of its factor layer and rod 
groups do not always hold. We can clearly see this 
from diagrams where, in some cases, new graphical 
symbols must be introduced that are not present in 
diagrams of groups with P-type lattices. The diamond 
plane is a spectacular example. Connected with this 
is some uncertainty in the Hermann-Mauguin  sym- 
bols, which are not uniquely justified, which was the 
case for the P lattices, and for which several equally 
logical symbols can be introduced. We shall give more 
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Table 1. Homomorphisms of  reducible plane groups 
onto frieze groups with respect to Z reductions 

cr~ crb q 

c l m l  ~./21ml ~b/21 l m 0, a/4 
c l l m  ~a/21 lm ~b/21 m l O, b/4 
c2mm ~a/E2mm ~b/22mm 0, a/4, b/4, (a+b) /4  

attention to these new features through comments on 
individual systems in the next section. 

6. Homomorphic projections of reducible plane and 
space groups with respect to Z reductions 

In tables of homomorphic  projections we use the 
standards of reducible plane and of reducible space 
groups so that the resulting projections are not stan- 
dard. We shall therefore arrange the tables in a 
different way. In the first column of each table we 
list the Sch/Snflies symbols for the point classes; in 
the next column these are followed by the SchSnflies 
symbols of the corresponding reducible space groups 
for which Z reduction of the translation subgroup 
occurs. For monoclinic and orthorhombic groups we 
list further the Hermann-Mauguin  symbols of these 
groups in all settings (in monoclinic cases we should 
consider the type of the setting) that imply Z reduc- 
tion. Homomorphic  projections are listed in the next 
two columns, where the indices of the symbols o" 
denote the plane or line onto which we project. The 
last column contains all characteristic shift vectors. 
We also list all information conventionally with 
respect to the R reduction V(a, b )G V(c), so that the 
layer groups are always related to the space E (a, b) x 
V(c). 

Plane groups of a rectangular system. The unique 
centered lattice type in the plane is the c-rectangular 
type. The homomorphisms o'a, trb of the two group 
types (one in two settings) onto frieze groups and the 
characteristic shift vectors are presented in Table 1. 

Projections of  reducible space groups onto rod groups 

Up to orthorhombic systems, these projections are 
symmorphic rod groups. This can be explained very 
briefly. With the exception of the rhombohedral  lat- 
tice, the centering vectors in three dimensions always 
have the component  c/2 and the projection T~2-- 
~¢/2 = T(c/2)  of Tc onto V(c) is generated by c/2. 
The screw and glide translations c/2 become elements 
of this group and hence all rod groups resulting from 
the projection of monoclinic and orthorhombic 
groups are symmorphic. The fourfold screw axis 
(subl or equivalently sub3), where the screw transla- 
tion is c/4 (and, equivalently, 3c/4), creates a fourfold 
screw axis (sub2) with respect to the translation sub- 
group ~c/2. Analogously, the diamond plane creates 
an axial glide plane c. 

The fourfold axes 41 and 43 always appear in pairs 
and 41 in Hermann-Mauguin  symbols o f / - cen te red  
space groups can be replaced by 43 without violating 
the logical origin of the symbol. With each threefold 
axis of a trigonal group are associated another two 
threefold screw axes of opposite chirality; the projec- 
tion of T~ onto V(c) is the group Y°2 = ~ e / 3  = T(c/3)  
and the screw translations are multiples of c/3, so 
that the projection results in an ordinary threefold 
axis. For groups C6o and D6d, an axial plane with 
glide translation c/2 is present. Since 2 and 3 have 
no common divisor, the glide translation c/6 occurs 
and the glide plane persits in the projection. 

Projections of reducible space groups onto layer groups 

Monoclinic systems. Each of the five monoclinic 
space-group types is presented in International Tables 
for Crystallography (1987) with three diagrams. The 
orthogonal projection leads to layer groups of an 
oblique system, the other two diagrams can be inter- 
preted as skew projections that lead to layer groups 
of a rectangular system. The three types of cell choice 
with respect to the unique axis c are described by the 
Bravais letters A, B and I. The skew projections for 
the I case are, however, not explicitly presented. As 
a result, the diagrams that correspond to entries I121 
and 1211, l l m l  and Im11, I l c l  and I c l l ;  l l a l  and 
Ib11, I12 /ml  and I2/m11, I12/cl  and I2/c11; 
I12/a l  and I 2 / b l l  are missing even in the 1987 
edition of International Tables for Crystallography. 
We conventionally consider the plane of the diagram 
as E(a ,b ) ,  so that the two rectangular diagrams 
(lower and right) correspond to the choices a and b 
of unique axes. If the oblique diagram (c axis) shows 
the setting A (setting B from the other side), then the 
lower diagram corresponds to the setting C (viewed 
from both sides), which leads to Z decomposition 
and hence all these cases were already listed in paper 
I of this series. The diagrams on the right then corre- 
spond to settings A and B. If the oblique diagram 
corresponds to the setting I, then both side diagrams 
(lower and right) also correspond to the setting I. 
These are the missing diagrams. We list in Tables 2 
and 3 the settings in small groups as they correspond 
to the choice of unique axes c, b and a. Oblique 
diagrams are therefore listed first. When a glide plane 
is present, we have two distinct group settings for the 
I setting of the lattice (four settings instead of three). 
The corresponding layer groups are monoclinic- 
oblique, the rod groups are monoclinic-orthogonal.  
This exhausts the cases with unique axis c. 

Next there follows either two couples or two triplets 
of settings with unique axes b and a. Accordingly, 
there are settings A or I and B or I and for I settings 
there are still two distinct settings of groups with a 
glide plane. The resulting layer groups are mono- 
clinic-rectangular; the rod groups are monoclinic- 
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Table 2. Homomorphisms of  reducible space groups onto layer and rod groups with respect to Z reductions: 
monoclinic groups 

G 

q 

G~ 

O-au o- e q 

C 3 A112 Pb/2112 ~c/2112 0, b/4 
B112 Pal2112 ~e/2112 0, a/4 
I112 /~112 ~c/2112 0, (a+b)/4 
A121 Pb/2121 ~c/2121 0, c/4 
I121 c121 ~c/2121 0, c/4 
B211 p./2211 ~/2211 0, c/4 
I211 c211 ~c/2211 0, c/4 

C 3 AI 1 ra pb/21 lm ~/211 m 0, c/4 
B l l m  pa/21 lm $c/211m 0, c/4 
I l l m  /~llm ~/211 rn 0, c/4 
A l m l  Pb/21ml ~c/21 m I 0, b/4 
l l m l  c lml  ~e/21 rnl 0 
Bm 11 p./2 m 11 ~e/2m 11 0, a/4 
Iml l  cmll  ~c/2mll 0 

C 4 A l i a  Pb/21 la ~c/21 lm 0, c/4 
Bl l b  pa/211b ~¢/21 lm O, c/4 
I l i a  /~lln ~c/21 lm O, c/4 
I1 lb /~11 n ~c/211 m 0, c/4 
A l a l  Pb/21al ~c/21ml 0, b/4 
l l c l  c lml  ¢~c/21ml 0 
l l a l  c lml  ~e/21ml 0 
Bb l l p./2b l I ~e/2m l I O, a/4 
Ic l 1 cm 11 ~cl2m 11 0 
lb l 1 cm 11 ~ /2m l 1 0 

C32h A l l 2 / m  Pb/2112/m ~/2112/m O, b/4, c/4, (b+c)/4 
B l l 2 / m  Pal2112/m pc/2112/m 0, a/4, c/4, (a+c)/4 
I l12/m /3112/m ~e/2112/m 0, (a+b)/4, c/4, (a+b+c) /4  
A12/ml  Pb/212/ml ~¢/212/rnl 0, b/4, c/4, (b+c)/4 
l12/ml  c l2 /ml  ~c/212/ml 0, c/4 
B2/m 11 Pal22~ m 11 ~/22/m 11 0, a/4, c/4, (a + c)/4 
I2/m 11 c2/m I 1 Bc/22/m I 1 0, c/4 

CSh A l l 2 / a  Pb/2112/a ~/2112/m 0, b/4, c/4, (b+c)/4 
B112/b p./2 i 12/b #c/2112/m 0, a/4, e/4, (a+c)/4 
l l12/b  /~112/n /~/2112/m O, (a+b)/4, c/4, (a+b+c) /4  
l l12 /a  /~l12/n I%/2112/m 0, (a+b)/4, e/4, (a+b+c) /4  
A12/al  pb/212/a 1~/21212/ml 0, b/4, e/4, (b+e)/4 
I12/cl  c l2 /ml  ~ /212/ml  0, e/4 
112/al c l2 /ml  ~e/212/rnl 0, c/4 
B2/b I 1 Pa/22/b 11 dc/22/m I 1 0, a/4, e/4, (a + c)/4 
I2/c 11 c2/m I 1 d¢/22/m 11 0, c/4 
12/bll  c2/rnll [~¢/22/mll 0, c/4 

inclined. The treatment of diagrams is analogous to 
the corresponding cases of A, B and I centerings of 
orthorhombic groups. 

Orthorhombic systems. Since the A and B centerings 
correspond to two views of the same diagram, it is 
sufficient to consider only one of these centerings, 
say the A centering. 

A centering. The coupling of the centering vector 
(b + c)/2 with an inversion center or a twofold a axis 
generates the same kind of element at a distance 
(b+c) /4 .  The mirror b plane is associated with an 
axial b plane (c/2) and an axial b plane (a/2) is 
associated with a diagonal b plane [ (a+c) /2] .  The 
glide translation c/2 is lost on projection so the part- 
ners project onto the same kind of element of a layer 
group - a mirror plane and an axial plane (a/2), 
respectively. The twofold b axis is associated with a 
twofold screw axis at a distance c/4 with a screw 
translation b/2. The latter is, however, an element of 
T°~ and hence both axes project as an ordinary 
twofold axis. The twofold c axis is accompanied by 

a twofold screw axis at a distance b/4 that loses its 
screw translation c/2 in the projection. The mirror c 
plane creates an axial plane (b/2) at a distance c/4 
and, since b/2 belongs to T°1, both planes project 
to an ordinary mirror plane - the plane of the layer 
group. The axial c plane (a/2) associates with the 
diagonal one [(a + b)/2] and both project again to an 
axial c plane (a/2). The a planes are a special case. 
Since the centering vector (b+c) /2  lies in a plane, 
the mirror a plane is simultaneously a diagonal a 
plane [ (b+c) /2]  and the axial a plane (b/2) is simul- 
taneously an axial a plane (c/2). In other words, the 
full line is equivalent to a dash-dotted line; the dashed 
is equivalent to dotted. In Hermann-Mauguin sym- 
bols we can use interchangeably the letters m, n for 
the first of these planes, b, c for the second (a and c 
in the B setting). The reader can check the use of 
alternative diagrams and symbols for groups C~ 4" 
Atom2 (Anm2),  Am2m (An2m) or Bmm2 (Bran2), 
B2mm (B2nm); C~Sv • Abm2 (Acre2), Ac2m (Ab2m) 
or Bma2 ( Bmc2), B2cm ( B2am) and analogously for 
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Table  3. Homomorphisms o f  reducible space groups onto layer and rod groups with respect to Z reductions: , 
orthorhombic groups 

D2 

crab cr~ q 

D 5 B2212 pa/222t2 ~c/2222 0, a/4, c/4, (a + c)/4 
A2t22 Pb/22t22 I~/2222 0, b/4, c/4, (b + c)/4 

D 6 B222 Pa/2222 ~ac/2222 0, a/4, c/4, (a + c)/4 
A222 Pb/2222 ~c/2222 0, b/4, c/4, (b+ c)/4 

D 7 F222 pl/E,b/2222 ~c/2222 0, a/4, b/4, c/4, (a+ b)/4, 
(b+c)/4, (c+a)/4, (a+b+c)/4 

D 8 I222 c222 ~/2222 0 
D 9 I2t212~ c222 p~/2222 0 

C I t Bm2m Pa/2m2m ~c/2m2m 
2v 

A2mm Pb/22mm ~c/22ram 
C ~ 2 Bm21 b pa/Em21b ~c/2m2m 

A21ma Pb/E2t ma ~c/22mm 
Bb 2t m pa/Eb 2t m ~c/2m2 m 
A2 l am Pb/22t am ~c/22mm 

C~3o Bb 2b p./2b 2b /~/2 m2m 
A2aa Pb/22aa ~c/22mm 

C~4v Amm2 Pb/2mm2 ~c/2 mm2 
Bmm2 pa/2mm2 ~c/2 mm2 
Am2m Pb/2m2m ~c/2 m2m 
B2mm pa/E2mm ~c/22ram 

C~ 5 Abm2 Pb/Ebm2 ~c/2 ram2 
Bma2 pa/2ma2 ~c/2 mm2 
Ac2m Pb/2m2m ~c/2 m2m 
B2cm Pa/22mm Pc/22mm 

C~ 6 Area2 Pb/2ma2 ~cl2 ram2 
Bbm2 p~/2bm2 ~ /2  ram2 
Am2a Pb/2m2a ~c/2 m2m 
B2mb pa/E2mb ~c/22mm 

C~7,, Aba2 Pb/2ma2 ~c/2 ram2 
Bba2 pa/2bm2 ~c/2 ram2 
Ac2a Pb/2m2a ~¢/2 m2m 
B2cb pa/22mb ~c/22mm 

0, a/4, c/4, (a+c)/4 
0, b/4, c/4, (b+c)/4 
0, a/4, c/4, (a+c)/4 
0, b/4, c/4, (b+c)/4 
0, a/4, c/4, (a+c)/4 
0, b/4, c/4, (b+c)/4 
0, a/4, c/4, (a + c)/4 
0, b/4, c/4, (b+c)/4 
0 b/4 
0 a/4 
0 c/4 
0 c/4 
0 b/4 
0 a/4 
0 c/4 
0 c/4 
0 b/4 
0 a/4 
0, c/4 
0, c/4 
0, b/4 
0, a/4 
0, c/4 
0, c/4 

C~v C ~  From2 p./2,b/2mm2 ~,:/2 ram2 
Fm2m pa/2,b/2m2m ~c/2 m2m 
F2mm pa/2,b/22mm ~c/22ram 

C~ 9 Fdd2 Pa/2,b/2ba2 ~c/2 mm2 
Fd2d pa/2,bl2b 2n ~e/2m2m 
F2dd Pa/2,b/22an ~c/22mm 

C 2° Imm2 cram2 ~c/2mm2 
lm2m cm2m ~c/2m2m 
I2mm c2mm ~c/22mm 

C ~  lba2 cmm2 ~c/2mm2 
lc2a cm2a ~¢/2m2m 
12cb c2mb ~c/22mm 

C22 v Ima2 cmm2 ~ /2mm2 
Ibm2 cmm2 ~ /2mm2 
Im2a cm2a ~c/2m2m 
I2mb c2mb ~c/22mm 
I2cm c2mm ~c/22mm 
lc2m cm2m ~c/2m2m 

0, a/4, 
0, a/4, 
0, b/4, 
0, a/4, 
0, a/4, 
o, b/4, 
0 
0, c/4 
0, c/4 
0 
0, c/4 
O, c/4 
0 
0 
0, c/4 
0, c/4 
0, c/4 
0, c/4 

b/4, (a+b)/4 
c/4, (a + c)/4 
c/4, (b+c)/4 
b/4, (a+b) /4  
c/4, (a+c)/4 
c/4, (b+c)/4 

D2h D~ 7 Bmmb pa/2mmb ~c/2 mmm 
Aroma Pb/2mma ~c/2 mmm 
Area Pb/2mam ~c/2m rnm 
Bbmm p./2bmm ~c/2 mmm 

D~ah Bream p./2mab ~c/2mmm 
Abma Pb/2bma ~c/2 mmm 
A cam Pb/ 2 mam ~ c / 2 mmm 
Bbcm pa/ 2 bmm ~c/ 2 mmm 

D~ 9 Bmmm p./2mmm ~ /2mmm 
Ammm Pb / 2 mmm ~c/ 2 mmm 

D 2° Bbmb pa/2bmb ~c/2mmm 
Amaa Pb / 2 maa ~c/ 2 mmm 

D21h Bream p./2mmm ~c/2 mmm 
Abram Pb / 2 mmm ~c/ 2 mmm 
Acmm Pb/2mmm ~c/2 mrnm 
Bmcm pa/ 2 mmm ~c/ 2 mrnm 

D 22 Bbab p./2bab ~ /2  mmm 
A baa Pb / 2 baa ~c/ 2 mmm 
A caa pb/ 2 maa ~c/ 2 mmm 
Bbcb p~/ 2 bmb ~c/ 2 mmm 

0, a/4, c/4, (a+c)/4 
0, b/4, c/4, (b+c)/4 
0, b/4, c/4, (b+c)/4 
O, a/4, c/4, (a+c)/4 
O, a/4, c/4, (a+c)/4 
0, b/4, c/4, (b+c)/4 
0, b/4, c/4, (b+c)/4 
0, a/4, c/4, (a+c)/4 
0, a/4, c/4, (a+c)/4 
0, b/4, c/4, (b+c)/4 
0, a/4, c/4, (a+c)/4 
0, b/4, c/4, (b+c)/4 
0, a/4, c/4, (a+c)/4 
0, b/4, c/4, (b+c)/4 
0, b/4, c/4, (b+c)/4 
0, a/4, c/4, (a+c)/4 
0, a/4, c/4, (a+c)/4 
0, b/4, c/4, (b+c)/4 
0, b/4, c/4, (b+c)/4 
0, a/4, c/4, (a+c)/4 
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Dzh 

Table 3 (cont.) 

tr.. b o'~ q 
D 23 Fmmm palz.b/2mmm ~cl2mmm 0, a/4, b/4, c/4, (a+b)/4, 

(b+c)/4, (c+a)/4, (a+b+c)/4 
D224h Fddd p./2,b/2ban ~c/zmmm 0, a/4, b/4, c/4, (a + b)/4, 

(b+c)/4, (c+a)/4, (a+b+c)/4 
D 25 lmmm cmmm ~/2mmm 0, c/4 
D 26 lbam cmmm #cl2mmm 0, c/4 2h 

lcma cmma( b ) d~/2mmm 0, c/4 
Imcb cmma(b) #~/2mmm 0, c/4 

D27h Ibcc cmma(b) #~/2mmm 0, c/4 
D2Sh Imma cmma(b) ¢~12mmm 0, c/4 

lmmb cmma( b ) ~/2mmm 0, c/4 
Imam cmmm #¢/2 mmm 0, c/4 
Ibmm cmmm l~c/2mmm 0, c/4 
Icmm cmmm #c/2mmm 0, c/4 
Imcm cram l~c/2mmm 0, c/4 

C~ 6, C~ 7" D~ 7, D ~ ,  D2~, D22°. For groups D2~ and 
D22 2 pairs of different symbols and diagrams are used 
for otherwise evidently identical settings of the same 
space groups [Bream = Bmcm, Abram = A c m m  for 
D2~ and Bbab = Bbcb, Abaa = Acaa for D2h] .22 In the 
first case, the groups differ by the origin choice, in 
the second they are completely identical. 

F centering. There are three centering vectors (b + 
c)/2, ( a+c ) /2  and (a+b) /2 ,  of which the last lies in 
the plane of the layer group. The translation subgroup 
of the layer groups is, however, generated by vectors 
a/2 and b/2. It is easy to see that one inversion center 
is associated with another three and a twofold axis 
with another and in addition two screw axes. A mirror 
plane is at the same time a diagonal one and has a 
partner that is axial in two directions. All these ele- 
ments project as symmorphic ones. The diamond 
planes appear in pairs and project as diagonal planes. 

I centering. The coupling of elements with the cen- 
tering vector ( a + b + c ) / 2  associates a twofold screw 
axis with the ordinary axis. For c axes, both project 
as ordinary axes but for axes parallel with the diagram 
the screw axes again project as screw axes. The mirror 
plane associates with a diagonal plane and two axial 
planes are always associated with glide translations 
in perpendicular directions. The planes perpendicular 
to the diagram project as usual in P cases. The pair 
consisting of a mirror plane and diagonal plane 
parallel with the plane of the diagram projects as the 
plane of the layer group, while the two planes with 
perpendicular glide translations project onto a layer 
plane with two axial glide translations. The lattice of 
the layer group is of the c type here, which just allows 
such a symmetry element. All projections obtained 
by this analysis of orthorhombic groups are given in 
Table 3. 

Tetragonal system. The projection of the I lattice 
with the centering vector ( a + b + c ) / 2  results in a 
square lattice/3 with bases (a+b) /2 ,  ( a - b ) / 2 .  The 
centering vector couples with inversion centers, two- 
fold axes and planes in the same way as for ortho- 
rhombic/-centered cases. In particular, the diamond 

Table 4. Homomorphisms o f  reducible space groups 
onto layer and rod groups with respect to Z reductions: 

tetragonal groups 

tr. b o-~ 

C 4 C45 14 p4 ~/24 0, a/2 
C~ I4~ p4 #c/24 2 0, a/2 

S, s~ t:~ p~ /,c/~ 0. c/4 
C4h CS4h 14/m p4/m ~o/24/m O, a/2, 

C6h 14t/a p4/m ¢tc/242/m 0, a/2, 
D4 D49 I422 p422 #~/2422 0, a/2, 

D4 t° I4t22 p 4 2 2  /~/24222 0, a/2, 
C4v C940 14mm p4mm I%/24mm 0, a/2 

Cl4°o 14cm p4mm ~c/24mm 0, a/2 
C~lo I4 lcd p4bm ~c/242cm 0, a/2 
CI42~ 141md p4bm ~c/242cm 0, a/2 

Dza D9d I7;m2 pTl2m ~c/2d,.m2 0, c/4 
D~ ° I7;c2 pTl2m ~c/24c2 0, c/4 
D~1d I42m pTlm2 1~o/2712m O, c/4 
DI22d I~t2d pTlb2 ~c/242m 0, c/4 

D4h D~Th 14/mmm p4/mmm ~/24/mmm 0, a/2, 
Dt4Sh 14/mcm p4/mmm #c/24/mmm 0, a/2, 
D~gh 141/amd p4/nbm ~°/242/mmc O, a/2, 
D24°h I41/acd p4/nbm ~¢/242/mmc O, a/2, 

c/4, a/2 + c/4 
c/4, a/2+c/4 
c/4, a/2+c/4 
c/4, a/2+c/4 

c/4, a/2+c/4 
c/4, a/2 + c/4 
c/4, a/2+c/4 
c/4, a/2+c/4 

planes project onto axial planes as we can see by 
comparison of the projections ( a+b ) /4  of the 
diamond glide translation (a + b - c)/4 with basis vec- 
tors (a+b) /2 .  All fourfold axes project to ordinary 
ones. The projections are listed in Table 4. 

Trigonal system. The rhombohedral translation 
groups are subdirect sums of either of the following 
forms: 

T(a, b ) ~  T(c)[0 w ( 2 a + b + c ) / 3  w (a+ 2b+ 2c)/3], 

T(a, b)0) T(c)[0 w (a+ 2b+c) /3  w (2a+ b+ 2c)/3], 

where T(a, b)G T(c) = T a l G  To2 = Tao is the transla- 
tion group that corresponds to the hexagonal primi- 
tive lattice. The subdirect summands are in both cases 
the groups: T° l  =/~1/3 = T[(2a + b)/3, (a + 2b)/3] and 
T°2=¢~1/3= T(c/3) (see paper I or Kopsk2~, 1988). 
Accordingly, there exist two possible settings with 
respect to the conventional hexagonal basis (a, b, c): 
the obverse setting, used in the 1987 edition of Inter- 
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Table 5. Homomorphisms o f  reducible space groups 
onto layer and rod groups with respect to Z reductions: 

trigonal groups 

O'ab tr c q 
C 3 C 4 R3 fill33 ¢c/33 0, a/3, 2a/3 
C31 C2i R3 fill3 ~ #c/3 ~ 0, c/6, c/3 

0, a/3, 2a/3, c/6, 
c/3, a/3 + c/6, 

D 3 D 7 R32 /~1/3312 ~c/3321 a/3 +c/3, 2a/3 +c/6, 

2a/3+c/3 
C3v 1 C5o R3m /~1/331m ~c/33mI ~ 0, a/3, 2a/3 

C6o R3c /3t/231m /~c/33cl J ['0, a/3, 2a/3, c/6, 

D3c 1 D35d R3"m P~laJ"12/m ~e/33-ml ~ c/3, a/3+c/6, 
D6d R3c fil13312/m ~c/33cl [ a/3 +c/3, 2a/3 +c/6, 

[2a/3+c/3 

national Tables for  Crystallography as well as in the 
1952/1969 editions of International Tables for  X-ray 
Crystallography; and the reverse setting used in the 
first edition of Vol. I of Internationalle Tabellen zur 
Best immung yon Kristallstrukturen (1935). The rota- 
tion of a group by 7r/3 around the hexagonal axis 
sends it from one setting to the other. It leaves both 
homomorphic projections (layer and rod groups) 
invariant, so that they are the same for both obverse 
and inverse settings. They are listed in Table 5. 

7. Concluding remarks 

Let us briefly overview what we have described in the 
two papers and what still should be done. We have 
determined homomorphic projections of reducible 
plane and space groups onto their factor groups with 
respect to all types of Z reductions and Z decomposi- 
tions. The projections connected with Z decomposi- 
tions were used to introduce the nomenclature and 
symbols of frieze, layer and rod groups compatible 
with symbols for plane and space groups. The 

determination of factor groups is also equivalent to 
the classification of reducible plane and space groups 
into pairs of frieze-group classes and into pairs of 
layer- and rod-group classes, respectively. We must 
say, however, that this is not the end of the problem 
up to three dimensions. An exact and complete solu- 
tion must also involve the problem of origin choices 
since there are cases where we may list a layer or rod 
group as a projection of different space groups using 
the same symbol for this layer and/or  rod group, even 
though these projections have different locations in 
space, if we accept that the location of the space 
group is given by its diagram. There is only one 
remedy for this: we have to fix the Hermann-Mauguin 
symbols of space groups and of frieze, layer and rod 
groups to certain standard origin choices and use 
modified symbols if the groups are shifted in space. 
The addition to the standard symbol of a shift vector 
in parentheses would give a simple and clear conven- 
tion for this purpose. 
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Abstract 

This paper describes a method for automatic structure 
determination by the application of Karle-Hauptman 
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matrices to the phase problem. A new method, the 
common-minor strategy, is used to combine the infor- 
mation contained in several Karle-Hauptman 
matrices. Sets of phases large enough to define the 
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